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Many optimization procedures presume the availability of an initial approximation in the 
neighborhood of a local or global optimum.  Unfortunately, finding a set of good starting conditions 
is itself a nontrivial proposition.  We describe a procedure for identifying approximate solutions to 
constrained optimization problems.  Recurrent neural network structures are interpreted in the context 
of associative memories.  Associative memory matrices are trained to map the inputs of closely 
related transportation linear programs to optimal solution vectors.  The procedure performs well 
when training cases are selected according to a simple rule, identifying good heuristic solutions for 
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variables associated with true optimums are usually apparent.  In the great majority of cases, 
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 1. Introduction 
Operations research techniques have been applied to numerous resource allocation problems in urban 
planning.  Much of the impetus for these developments was provided by Dorfman, Samuelson and 
Solow's1 path-breaking text on linear programming and economic efficiency.  This work was 
especially important in the context of land use and transportation planning, because these efforts 
involve organizing and managing the market for urban land.  The connection between linear 
programming and general equilibrium economics  provided urban planners with a new view of the 
field's objectives. 
The influence of operations research on spatial resource allocation problems can be traced to at least 
three seminal papers.   Beckmann, McGuire and Winsten2 formulated a nonlinear program that 
identified competitive equilibrium flows for a transportation network with congestive links.   
Koopmans and Beckmann3 formulated a quadratric assignment problem with the objective of 
minimizing the location and interaction costs for a set of discrete activities located on a network.  
And finally, Hakimi4 considered the problem of locating one or more discrete facilities on a network 
to minimize either the sum of distances or the maximum distance between facilities and network 
nodes.  Much important work has followed these efforts, and operations research continues to lend 
substantive theoretical insights to urban planning and regional science activities. 
 Because operations research is such an extremely valuable planning tool, improved heuristic 
and optimal solution algorithms have considerable bearing on urban planning research.  Our current 
efforts focus on fundamental OR formulations germane to urban form, structure, and activities.  
Many of these formulations are discrete or otherwise nonlinear.  Nonlinear optimization techniques 
consistently require good starting conditions, usually in the form of good feasible solutions.  Gradient 
search and other numerical analysis procedures perform well in the neighborhood of a local optimum, 
but how does an investigator locate the right neighborhood?  Even in the convenient case of a linear 
program, finding an initial feasible solution has routinely proved as difficult as finding the program's 
global optimum.  Identifying good, infeasible starting conditions for linear programming problems is 
an important area of research, because an effective crash procedure can significantly reduce the 
computational burden of locating an initial feasible solution. 
 Our work is motivated by the desire to find an inexpensive procedure for identifying good 
starting conditions, feasible or otherwise, for constrained optimization problems relevant to the urban 
environment.  The experiment described below involves estimating the optimal solutions for a 
population of transportation linear programs.   We believe that this approach has considerable merit, 
and are working to extend this approach to more complicated urban programming problems. 
 
 2. Network Problems 
For four decades linear programming has held a pre-eminent position in economics  
and operations research.  This is primarily due to the utility of the simplex method, a solution 
algorithm developed by George Dantzig5.  Among the basic linear programming formulations, the 
transportation problem occupies a prominent position.  This problem requires the determination of an 
optimal  shipping schedule, Xij, from source i to sink j such that the cost function 

  ∑i ∑j cij • Xij     (1) 
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is minimized, subject to the constraints 

   ∑j Xij ≤ ai,   i = 1,2, …, m, (2) 

   ∑i Xij ≥ bj,   j = 1, 2, …, n, (3) 

    Xij ≥ 0,   i = 1,2, …, m;  j = 1, 2, …, n. (4) 

For consistency, it is further assumed that 

   ∑i ai = ∑j bj,  (5) 

which assures that supplies are exactly adequate to meet demands.  A significant aspect of this 
problem is to study the sensitivity of the optimal shipping schedules to variations in the configuration 
of supplies and demands.  We show, experimentally, that recent developments in one of the simpler 
areas of artificial neural networks hold promise in this context.   
 Hopfield and Tank6 used a recurrent neural network to find good feasible solutions to the 
Traveling Salesman Problem.  Their exercise in supervised learning is insightful, but Hopfield and 
Tank are logically silent on the question of how representative training cases should be generated if 
this involves solving NP-complete optimization problems.  Unlike the problem of finding an optimal 
tour, transportation linear programs can be solved in polynomial time.  Consequently, solutions can 
be generated inexpensively, and supervised learning procedures are simple to employ. 
 We employ Kohonen's7 concept of an associative memory matrix to map transportation linear 
programs to optimal solutions.  As Figure 1 indicates, associative memories address the pair-
associate problem.  Does there exist an associative memory M that will always map a finite set of 
arbitrarily selected stimulus vectors to the corresponding set of response vectors?  Associative 
memory matrices are simple neural structures, but the notion of stimulus and response remains 
crucial.  For each of K training cases, let the stimulus vector sk of dimension px1, and the response 
vector rk of dimension qx1, be specified.  Our objective is to determine an associative memory 
matrix M* of dimension pxq such that M*•sk will as nearly as possible equal rk for k = 1, 2, …, K.  
Following  
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Figure 1: An Ideal Associative Memory 
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Kohonen7, we take this to mean that if we form the stimulus matrix S of dimension pxK, whose kth 
column is sk, and the response matrix R of dimension qxK, whose kth column is rk, then the matrix 
M* is  to be determined by minimizing the L2 norm of the difference matrix  R - M•S.  That is, 

  M* = minM ||R - M•S||2.  (6) 

Obviously, minimizing the L2 norm minimizes mean square error.  The solution to this problem8 is 

  M* = R•S+     (7) 

where S+, dimension Kxp, is the Moore-Penrose generalized inverse of the rectangular matrix S.  
Codes for calculating this psuedo inverse are available in standard software packages such as 
SPEAKEASY and MATLAB.  Codes that use approximations to S+ to reduce numerical instability 
are currently under investigation at the University of Southern California.  
 Pure network problems are particularly appropriate candidates for this methodology.  They are 
unimodular, and representative formulations can be restricted to integer inputs and outputs with no 
loss of generality.  The coefficients in network constraints form a sparse matrix of ones and zeroes 
that is fixed for a given network configuration.  Most urban transportation planning problems involve 
determining network performance in response to changes in the demand for service, possibly as part 
of a larger search for optimal supply alternatives.  Even if link costs vary with link flows (which they 
do in an urban context), or origin-destination flows are not substitutable, network optimization 
problems are essentially vector mapping problems if the physical configuration of the network is 
fixed.  A vector of link cost parameters and/or origin-destination requirements defines the 
formulation, and the solution is a vector of link or path flows. 
 In the application presented below, the right hand side of a transportation linear program is 
designated the stimulus vector, with the associated response vector being the optimal shipping 
schedule and objective function value.  Finding a suitable set of training cases specifies the matrices 
R and S.  Each training case involves the solution of a transportation problem, for which 
SPEAKEASY contains a conventional algorithm. 
 In view of the actual nonlinear relation between the transportation problem's supplies and 
demands and the corresponding optimal shipping schedule, it is not clear that any memory matrix M* 
would adequately map stimuli into responses in this case.  Furthermore, if the product M*•sk is 
formed for a stimulus that is not in the training set, we may well wonder if the product yields a useful 
approximation to the optimal solution.  Previous work9 indicates that this simple technique works 
surprisingly well.  We present some further numerical results, and an extension that incorporates 
recurrent structure into the associative memory approach. 
 
 2.1 A Representative Network 
 We tested the utility of this procedure on a small transportation linear program, minimizing 

  c11 • X11 + c12 • X12 + c13 • X13 + c21 • X21 + c22 • X22 + c23 • X23 (8) 

subject to 

  X11 +  X12 X13 +    ≤ a1, (9) 
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     X21 +  X22 +  X23   ≤ a2, (10) 

  X11 +    X21   ≥ b1, (11)   

    X13 +    X23 ≥ b3, (13) 

  X11, X12, X23, X21, X22, X23 ≥ 0. (14) 

The graph for this formulation appears in Figure 2.  Even for such a small network, large numbers of  
training cases can be generated by permuting coefficients in the objective function and/or right hand 
side.  In this case, we set 

  total supply  = ∑i ai  =  ∑j bj  =  total demand  =  6, (15) 

and fixed c the vector of objective function coefficients at 

 c11 = 1,   (16) 

 c12 = 2,   (17) 

 c13 = 3,   (18) 

 c21 = 4,   (19) 

 c22 = 5,   (20) 

 c23 = 6.   (21) 

As noted above, a stimulus vector is defined to be the right hand side of the constraint set 

  sk = | a1 |     (22) 

   | a2 | 
   | b1 | 
   | b2 | 
   | b3 |, 
and the associated response vector is taken to be the optimal set of transportation flows, plus the 
optimal value of the objective function 

  rk =  | X11 |    (23) 

   | X12 | 
   | X23 | 
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   | X21 | 
   | X22 | 
   | X23 | 
   |  Z |. 
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Figure 2: A Simple Transportation Network 
 
Permuting feasible integer values for the right hand side generates a population of 196 stimulus- 
response pairs. 
 Any  n-subset of these paired stimulus and response vectors defines the respective columns of 
the training matrices S5xn and R7xn.  The objective is to use this training information to define an 
associative memory matrix M*7x5 that produces good estimates of the response (solution) vectors 
associated with new stimulus (formulation) vectors 
  M*•sk = r*k.      (24) 

 
 2.2 Selecting a Training Set 
 How to select a representative training set is not clear.   Kohonen7 suggests that stimulus 
vectors be selected in a way that maximizes their mutual orthogonality.  We used a random sampling 
procedure to identify a class of training vectors that yields good results.  20 random samples of sizes 
5, 10, 20, and 30 were used to compute a total of 80 matrices M*.  In each case, the associative 
memory matrix was used to estimate the response vectors for the stimuli not included in the training 
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sample.  Three results are apparent.  First, the root mean square (RMS) error measure computed for 
each such test set attenuates rapidly as the number of training cases used to determine M* increases.  
Second, there is an obvious lower bound on these RMS values.  And third, certain classes of training 
vectors are consistently associated with lower RMS measures than others.  The use of RMS as an 
error measure is arbitrary.  It is a conventional measure that is easier to compute than the mean 
absolute deviation (MAD), and which permits M* to be interpreted as the best linear unbiased 
estimator (BLUE) in the special case of a linear statistical relationship between stochastic vectors sk 
and rk. 
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Figure 3: Root Mean Square Error of Estimation Vs. Number of Training Cases:  Four Samples 
   of Size Twenty. 
 
These results imply that there is an efficient dimension for the training matrices S and R.  More 
importantly, training sets within which each vector element assumes a representative range of values 
consistently provide test estimates that have lower RMS values.  Based on these criteria, we selected 
a representative training set of 23 stimulus-response pairs.  The corresponding matrices S and R are 
presented in the Appendix.  These imply the following associative memory matrix 

  M* = | 0.60000 3.60000 0.40000 1.40000 2.40000 | (25) 
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  | 0.24063 -0.09341 0.34614 -0.06979 -0.12913 | 
  | 0.30062 -0.10079 -0.05326 0.35638 -0.10329 | 
  | 0.25875 -0.00580 -0.09288 -0.08659 0.43241 | 
  | -0.04064 0.29341 0.45386 -0.13021 -0.07087  | 
  | -0.10062 0.30079 -0.14674 0.44362 -0.09671 | 
  | -0.05875 0.20580 -0.10712 -0.11341 0.36759 |. 
 
 3. Numerical Results:  The Nonrecurrent Case 
Forming the products M*•sk for the 173 formulation vectors sk not included in the training set 
produces test estimates r*k  for the corresponding solution vectors rk.  The average RMS measure for 
these test estimates was 0.7231, versus an average RMS of 1.0049 for the estimates of the 23 training 
responses, implying that the training set is indeed representative of the test population.  A scatterplot 
of the nonrecurrent training estimates versus optimal link flows is shown in Figure 4.  If the 
nonrecurrent associative memory was returning perfect estimates of the optimal link flows, the data 
points on this graph would all fall on the 45 degree line.  The estimates covary with the true optimal 
flows, but weakly:  The variance in the optimal link flows accounts for 64.4 percent of the variance 
observed in the training estimates. 
 If negative numbers are always rounded to zero, then rounding the estimated elements of the 
training and test response vectors to the nearest integer value produces one of four outcomes: 

 • the optimal basis and solution are correctly identified; 

 • the optimal basis is correctly identified but some numerical values are incorrect; 

 • the optimal basis is not correctly identified because some nonbasic variables have been 
  rounded to positive values, but no basic variables have been rounded to zero; and 

 • the optimal basis is not correctly identified because some nonbasic variables have been 
  rounded to positive values, and some basic variables have been rounded to zero . 

In either of the middle circumstances, the optimal solution can be obtained by solving a new, simpler 
linear program in which all of the nonbasic variables are constrained to zero.  The last outcome is 
much more problematic, because variables in the optimal basis have been incorrectly identified as 
nonbasic.  Fortunately, the best and worst case results were, respectively, the most and least frequent 
of the  outcomes we obtained.  The relative frequencies with which the associative memory matrix 
M* generates these outcomes in these four categories are summarized in Table 1. 
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Figure 4: Nonrecurrent Estimates of Optimal Link Flows Vs. Optimal Link Flows:  Twenty-
Three   Training Cases 
 
Table 1: Rounding Results:  Estimated Solutions M*•sk = rk* vs. True Solutions rk 

Rounding Identifies Rounding Identifies Rounding Produces Posi- Rounding Produces Zero- 
the Optimal Solution the Optimal Basis tive Nonbasic Variables Valued Basic Variables 
_________________________________________________________________________________ 

------------------------------------------------23 Training Vectors-------------------------------------------------
- 
  0  0  20  3 
--------------------------------------------------173 Test Vectors---------------------------------------------------
- 
  35  11  97  30 
 
 4. Extending the Stimulus Vectors 
This simple procedure performs surprisingly well, but there are avenues for improvement.  The most 
obvious is to extend the dimension of the stimulus vector to include quadratic or other nonlinear 
combinations of the stimulus elements10.  This extension improved the estimates obtained for a 
previous exercises in optimization9 and signal processing11.  In this case, however, extending the 
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stimulus vectors to include all possible quadratic combinations of the original stimulus elements 
provides only marginal improvement.  Extending the dimension of sk increases the dimension of M*.  
Clearly, a larger associative memory matrix can encode more information, and thus we would never 
expect extending either the stimulus vectors to cause an increase in the errors associated with test 
response estimates.  However, there is a trade-off between the computation cost of identifying M* 
and the benefits from using polynomial versions of the stimulus vectors.  Our experiences indicate 
that, as the systems being modeled become more complex, the trade-off favors shorter stimulus 
vectors. 
 It is tempting to pursue a more sophisticated artificial neural network approach, such as a 
Rumelhart12, 13 net in which internal layers of hidden units with thresholding operations are used to 
provide a representation for the nonlinear relations connecting stimulus and response vectors.  One 
difficulty with this latter approach is that it is not possible to know in advance just how many hidden 
units and layers will suffice for the problem at hand.  Moreover, obtaining the connective strengths 
for a Rumelhart network is a nonlinear optimization problem for which convergence is not always 
assured14.   
 
 4.1 Nonlinear Recurrence 
 There is a simpler alternative available.  Rummelhart networks are feed forward networks, and 
thus nonrecurrent15.  Such nonrecurrent networks are unconditionally stable, because outputs do not 
feed back to inputs.  In contrast, recurrent networks are characterized by such feed backs.  This 
makes recurrent networks dynamic, and endows them special utility as associative memories.  
Because a trajectory of network outputs is available from a single input, recurrent networks have 
considerable potential for data compression and pattern recognition7, 15.  For example, the 
Bidirectional Associative Memory16 is a recurrent network structure that recognizes patterns by using 
estimated outputs to refine inputs, and then feeding back the refined inputs to improve the estimated 
outputs.  Unfortunately, recurrent networks may also be unstable.  Outputs might never converge.  A 
sufficient but not a necessary condition for recurrent network stability has been defined by Cohen and 
Grossberg17. 
 We attempted to further reduce test case RMS by interpreting recurrent neural network 
structure in the context of Kohonen's associative memory matrix.  This extension is summarized by 
the flowchart in Figure 5.  An initial associative memory matrix M* is obtained as before.  Training 
stimulus vectors are subsequently extended by appending nonlinear transformations f(•) of the 
estimated training response vectors, and a recurrent associative memory matrix M** is computed 
based on the extended training stimulus matrix S.  Test stimuli sk are initialized by appending 
nonlinear transformations of the estimated response vectors r*k = M*•sk.  The definition of the test 
stimulus vectors sk is updated to the extended version, and new test response estimates r**k are 
computed as the product of the recurrent memory matrix M** and the extended test stimuli sk.  These 
response estimates r**k are improved versions of the response information used to extend sk.  If each 
of the response components used to extend the vectors sk is updated to the improved version, further 
improvement results each time the operation M**•sk is performed.  This updating procedure 
continues until improvements are sufficiently small. 
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Figure 5: Algorithm for Computing a Recurrent Associative Memory Matrix. 
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 4.2 Nonlinear Examples 
 The elements of the 23 training response vectors were subjected to three nonlinear 
transformations: 

 • quadratic expansion:  X11
2, X11•X12, …,  X23•X22, X23

2; 

 • exponential:  exp(Xij); and 

 • hyperbolic tangent:  tanh(Xij) = [exp(Xij) - exp(-Xij)] / [exp(Xij) + exp(-Xij)]. 

The first two transformations are simple, obvious candidates for experimentation.  The hyperbolic 
tangent is often used as an activation function in neural networks.  In each case, the training stimulus 
vectors are extended by appending the transformed response vectors.  These separate modifications 
of the matrix S produce three recurrent associative memory matrices M**quadratic, M**exponential, and 
M**hyperbolic tangent, of dimensions 7x26, 7x11, and 7x11, respectively.   
 In all three cases, a recurrent extension of the stimulus vector substantially improves the 
performance of the associative memory matrix.  Only two iterations were required in each case, with 
the second iteration providing virtually no improvement.  The hyperbolic tangent transformation 
defines the best case.  Scatterplots of the estimated optimal flows obtained at iteration 1 versus the 
true optimal flows appear in Figure 6.  These indicate considerable improvement relative to the  
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Figure 6: Recurrent Estimates of Optimal Link Flows Obtained at Iteration 1 Vs. Optimal Link 
  Flows:  Twenty-Three Training Cases, Hyperbolic Tangent Transformation 
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nonrecurrent case.  At iteration 1, the variance in the optimal link flows accounts for 99.0 percent of 
the variance observed in the training estimates.  There is very little unexplained variance left for 
iteration 2 to attack. 
 Rounding results are summarized in Table 2.  Prior to rounding, the best case (hyperbolic 
tangent) mean square error measure for the terms Xij is reduced by 99.46 % relative to the 
nonrecurrent case, dropping from 3.278 to 0.018.  The  optimal solution is identified by rounding in 
78.61 % of the hyperbolic tangent test cases, versus only 20.23 % of the nonrecurrent test cases.  One 
or more basic variables is rounded to zero in only 5.78 % of the hyperbolic tangent test cases, versus 
17.34 % of the nonrecurrent test cases. 
 
Table 2: Rounding Results:  Estimated Solutions M**•sk = rk** vs. True Solutions rk 

Rounding Identifies Rounding Identifies Rounding Produces Posi- Rounding Produces Zero- 
the Optimal Solution the Optimal Basis tive Nonbasic Variables Valued Basic Variables 
_________________________________________________________________________________ 

-------------------------------------------------------Quadratic-------------------------------------------------------
- 
-------------------------------------------------23 Training Vectors------------------------------------------------
- 
  21  0  2  0 
---------------------------------------------------173 Test Vectors--------------------------------------------------
- 
  107  17  39  10 
 
------------------------------------------------------Exponential-----------------------------------------------------
- 
-------------------------------------------------23 Training Vectors------------------------------------------------
- 
  14  2  7  0 
---------------------------------------------------173 Test Vectors--------------------------------------------------
- 
  88  8  64  13 
 
-------------------------------------------------Hyperbolic Tangent------------------------------------------------
-- 
-------------------------------------------------23 Training Vectors------------------------------------------------
- 
  22  1  0  0 
---------------------------------------------------173 Test Vectors--------------------------------------------------
- 
  136  10  17  10 
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 It is surprising that the hyperbolic tangent transformation identifies optimal test solutions and 
bases more frequently than the quadratic transformation, because M**quadratic has more than twice the 
elements of M**exponential or M**hyperbolic tangent.  Extending the stimulus vectors by appending linear 
transformations of the estimated response vectors provides some additional context for these results, 
bu produced no improvements relative to the nonrecurrent case.  Consequently, we conclude that 
these results include more improvement than can be explained by the increased dimensionality of the 
matrices  M**.  The nonlinear transformation of the estimated response vector is making a useful 
contribution that extends beyond mere dimensionality.   
 
 5. Conclusions and Extensions 
 This approach requires much additional exploration, including the generation of more general 
results.  It is surprising that such a simple procedure performs so well.  Executing the transportation 
simplex algorithm is computationally less intensive than the general simplex procedure used to solve 
more difficult linear programs.  For one of these more difficult problems, a recurrent associative 
memory matrix might logically be used generate a good infeasible or feasible solution, substantially 
reducing the number of iterations required to complete phases 1 or 2 of the simplex algorithm.  We 
have not combinatorialized a comparison between the transportation simplex algorithm and the 
matrix operation M**•sk, but conclude on inspection that the computational savings is considerable.  
The crucial point is that the recurrent associative memory matrix M** successfully encodes the 
nonlinear mapping of linear programming inputs to linear programming outputs. 
 This research effort raises more questions than it answers.  For example: 

 • Should information about the dual formulation be included in the stimulus and response 
   vectors?  Because linear programs have simple duals, we expect that training cases  
   defined by  manipulating coefficients in the objective function would perform as well  
   as training cases defined by manipulating the right hand side. 
 • Can noisy stimulus vectors be used?  If noise is present in the test stimuli, should it 
   appear in training vectors? 

 • Can equally good approximate solutions be generated for more complicated linear  
  programs?   

 • Can different objective functions be accommodated in the same training set? 

 • Can the information in training cases be reliably extrapolated?  How accurate is the  
  response vector estimated for a new stimulus vector if that stimulus includes values  
  outside the range of the training cases?  

 • Can good heuristic solutions to nonlinear programming problems be generated?   
  Probably so.  Neural networks have been used to approximate the solutions to nonlinear 
  optimization problems.  For example, what would be the quality of estimates produced 

 if congestion accrued on this transportation network, and link costs were increasing  
 functions of  link flows? 

 We fully expected that a more sophisticated neural network procedure would be needed to 
obtain estimates as promising as the outputs provided by the recurrent associative memory matrix.  
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However, the transportation network used in this exercise is very simple.  A larger-scale or more 
complicated formulation might well be better handled by a Rumelhart network than by the procedure 
described here.  Research is underway at the University of Southern California to better define the 
class of constrained optimization problems for which associative memory and more sophisticated 
neural network procedures provide a degree of utility. 
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APPENDIX 
 

Twenty-three Stimulus Response Pairs 
 

------------------------Stimulus Vectors----------------------- 

  s1 s2 s3 s4 s5 s6 s7 s8 

  a1 0 0 0 0 0 0 1 1 
  a2 6 6 6 6 6 6 5 5 
  b1 0 0 0 1 2 6 1 5 
  b2 0 3 6 5 4 0 0 0 
  b3 6 3 0 0 0 0 5 1 
 
  s9 s10 s11 s12 s13 s14 s15 s16 

  a1 1 2 3 3 3 4 5 5 
  a2 5 4 3 3 3 2 1 1 
  b1 6 0 1 3 3 1 0 1 
  b2 0 3 3 1 2 4 0 2 
  b3 0 3 2 2 1 1 6 3 
 
  s17 s18 s19 s20 s21 s22 s23  

  a1 5 6 6 6 6 6 6  
  a2 1 0 0 0 0 0 0  
  b1 5 0 0 0 3 4 6  
  b2 0 0 4 6 3 2 0  
  b3 1 6 2 0 0 0 0  
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-----------------------Response Vectors----------------------- 

  r1 r2 r3 r4 r5 r6 r7 r8 

  X11 0 0 0 0 0 0 0 0 
  X12 0 0 0 0 0 0 0 0 
  X13 0 0 0 0 0 0 1 1 
  X21 0 0 0 1 0 6 1 5 
  X22 0 3 6 5 2 0 0 0 
  X23 6 3 0 0 4 0 4 0 
  Z 36 33 30 20 28 24 31 23 
 
  r9 r10 r11 r12 r13 r14 r15 r16 

  X11 1 0 0 0 0 3 0 0 
  X12 0 0 1 1 2 1 0 2 
  X13 0 2 2 2 1 1 5 3 
  X21 5 0 1 3 3 1 0 1 
  X22 0 3 2 0 0 0 0 0 
  X23 0 1 0 0 0 0 1 0 
   Z 21 27 22 20 19 18 21 17 
 
  r17 r18 r19 r20 r21 r22 r23  

  X11 4 0 0 0 3 4 6  
  X12 0 0 4 6 3 2 0  
  X13 1 6 2 0 0 0 0  
  X21 1 0 0 0 0 0 0  
  X22 0 0 0 0 0 0 0  
  X23 0 0 0 0 0 0 0  
   Z 11 18 14 12 9 8 6  
 
 
 


